

• MA.912.A.3.8

Graph a line given any of the following information: a table of values, the *x*- and *y*-intercepts, two points, the slope and a point, the equation of the line in slope-intercept form, standard form, or point-slope form.

• MA.912.A.3.9 Determine the slope, *x*-intercept, and *y*-intercept of a line given its graph, its equation, or two points on the line.

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

MA.912.G.1.4
 Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Equations of Lines

An *equation* of a line can be expressed in several ways. Mathematicians sometimes use the format ax + by = c. This is called **standard form (of a linear equation)**. In the *standard form*, **linear equations** have the following three rules.

- 1. a, b, and c are **integers**, or the numbers in the set $\{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$
- 2. *a* cannot be a **negative integer**
- 3. a and b cannot both be equal to 0

Linear Equations in Standard Form

- ax + by = c
- x and y are variables
- a, b, and c are **constants** for the given equation

You can graph a line fairly easily by using standard form.

Follow this example.

$$3x + 2y = 12$$

If we replace *x* with 0 we get the following.

$$3x + 2y = 12$$

$$3(0) + 2y = 12$$

$$0 + 2y = 12$$

$$2y = 12$$

$$y = 6$$

This tells us that the point (0, 6) is on the graph of the line 3x + 2y = 12. In fact (0, 6) is called the *y*-intercept of the line. It is the point where the line crosses the *y*-axis.

Remember that you must have two points to decide exactly where the line goes on the coordinate plane. So, we repeat the process, but this time replace *y* with 0.

$$3x + 2y = 12$$
$$3x + 2(0) = 12$$
$$3x + 0 = 12$$
$$3x = 12$$
$$x = 4$$

This tells us that the point (4, 0) is also on the line. Did you guess that this is called the x-intercept?

So, if we plot the two points (0, 6) and (4, 0), we can draw a line connecting them.

Did you notice that we could find the slope of the line above either by using the slope formula with the *x*- and *y*-intercepts

$$(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 6}{4 - 0} = \frac{-6}{4} = \frac{-3}{2})$$
 or by counting rise and run from the graph?

Let's try another example.

$$5x - y = 15$$

If
$$x = 0$$
,

$$5x - y = 15$$
$$5(0) - y = 15$$

$$0 - y = 15$$

$$-y = 15$$

$$y = -15$$

If
$$y = 0$$
,

$$5x - y = 15$$

$$5x - y(0) = 15$$

$$5x - 0 = 15$$

$$5x = 15$$

$$x = 3$$

$$(3, 0)$$
 x-intercept

Graph of 5x - y = 15

Your turn.

Slope-Intercept Form

Many students prefer to use the **slope-intercept form** for the equation of a line. An equation in this form tells you the slope of a line and where it crosses the *y*-axis. The generic format looks like the following.

So if y = 2x + 4, this line crosses the *y*-axis at 4 and has a slope of 2.

To graph this line, plot a point at (0, 4) and count the rise and run of the slope $(\frac{2}{1})$ from that point and draw a line.

For the equation of the line

$$y = \frac{2}{3}x - 7,$$

the *y*-intercept is -7.

The slope is $\frac{2}{3}$, so the graph looks like the following.

Remember: If the equation looks like y = 6, the line is *horizontal* and has *zero* slope. If the equation looks like x = 6, the line is *vertical* and has *no* slope. Look at the graphs below.

y = 6 line is horizontal zero slope

x = 6line is vertical
no slope
(sometimes referred to as undefined)

Transforming Equations into Slope-Intercept Form

Sometimes it is necessary to transform an equation into the *slope-intercept form* so that we can readily identify the slope or the *y*-intercept or both.

Follow these examples. Remember, we want it to be in the y = mx + b format.

Example 1

$$6x - 3y = 12$$

 $-3y = -6x + 12$ subtract 6x from both sides
 $y = 2x - 4$ divide both sides by -3

Now we can easily see that the slope is 2 and the *y*-intercept is -4.

Example 2

$$x + \frac{2}{3}y = 8$$

$$\frac{2}{3}y = -x + 8$$

$$(\frac{3}{2})\frac{2}{3}y = -(\frac{3}{2})x + (\frac{3}{2})8$$

$$y = -\frac{3}{2}x + 12$$
subtract x from each side multiply both sides by $\frac{3}{2}$

$$y = \frac{3}{2}x + 12$$
simplify
$$y$$
-intercept = 12